Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.
Worm gear speed reducers give the design engineer considerable options, but these gear systems present a challenge to the lubrication engineer. Heat energy generated by the high rate of sliding and friction in the contact zone causes worm gears to be relatively inefficient compared to other gear types. Because worm gears operate under a boundary or near-boundary lubrication regime, a satisfactory lubricant should contain a friction modifier to alleviate these conditions.
The south-pointing chariot exhibited at the Smithsonian Institution, Washington, D.C., (circa 2600 BC)is shown in Fig. 1. Although the mechanism is ancient, it is by no means either primitive or simplistic. The pin-tooth gears drive a complex system, wherein the monk on the top of the chariot continues to point in a preset direction, no matter what direction the vehicle in moved, without a slip of the wheels.(1)
The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.
Modern manufacturing processes have become an ally of the product designer in producing higher quality, higher performing components in the transportation industry. This is particularly true in grinding systems where the physical properties of CBN abrasives have been applied to improving cycle times, dimensional consistency, surface integrity and overall costs. Of these four factors, surface integrity offers the greatest potential for influencing the actual design of highly stressed, hardened steel components.
Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)
Involute Curve Fundamentals. Over the years many different curves have been considered for the profile of a gear tooth. Today nearly every gear tooth uses as involute profile. The involute curve may be described as the curve generated by the end of a string that is unwrapped from a cylinder. (See Fig. 1) The circumference of the cylinder is called the base circle.
The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.
The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.