The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.
Worm gearing is of great antiquity, going back about 2100 years to Archimedes, who is generally acknowledged as its inventor.
Archimedes' concept used an Archimedial spiral to rotate a toothed wheel. Development of the worm gearing principle progressed along conventional lines until about 500 years ago when Leonardo DaVinci evolved the double enveloping gear concept.
Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.
With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the
rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.
Selection of the number of teeth for each gear in a gear train such that the output to input angular velocity ratio is a specified value is a problem considered by relatively few published works on gear design.
One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation.
Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the
plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.
Gear gashing is a gear machining process, very much like gear milling, utilizing the principle of cutting one or more tooth (or tooth space) at a time. The term "GASHING" today applies to the roughing, or roughing and finishing, of coarse diametral pitch gears and sprockets. Manufacturing
these large coarse gears by conventional methods of rough and finish hobbing can lead to very long machining cycles and uneconomical machine utilization.
A recent U.S. Army Tank-Automotive Command project, conducted by Battelle's Columbus Laboratories. successfully developed the methodology of CAD/CAM procedures for manufacturing dies (via EDM) for forging spiral bevel gears. Further, it demonstrated that precision forging of spiral bevel gears is a practical production technique.
Although no detailed economic evaluation was made in this study, it is expected that precision forging offers an attractive alternative to the costly gear cutting operations for producing spiral bevel gears.
As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines
finite element techniques with experimental signature and modal
analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how
premature bearing failures were eliminated by detuning the torsional
oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.
An expression is derived, giving the optimum number of teeth over which the span measurement should be made, for profile-shifted spur and helical gears.