Noncircular gearing is not new. There are well-documented articles covering standard and high order elliptical gears, sinusoidal gears, logarithmic spiral gears, and circular gears mounted eccentrically. What these designs have in common is a pitch curve defined by a mathematical function. This article will cover noncircular gearing with free-form pitch curves, which, of course, includes all the aforementioned functions. This article also goes into the generation of teeth on the pitch curve, which is not usually covered in the technical literature. Needless to say, all this is possible only with the help of a computer.
Nowadays, finish hobbing (which means that there is no post-hobbing gear finishing operation) is capable of producing higher quality gears and is growing in popularity.
In general, bevel gears and curvic couplings are completely different elements. Bevel gears rotate on nonintersecting axis with a ratio based on the number of teeth. Curvic couplings work like a clutch (Fig. 1).
This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.
Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing.
This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.
The induction hardening and tempering of gears and critical components is traditionally a hot subject in heat treating. In recent years, gear manufacturers have increased their knowledge in this technology for quality gears.
The performance of metal surfaces can be dramatically enhanced by the thermal process of rapid surface melting and re-solidification (RMRS). When the surface of a metal part (for instance, a gear) is melted and re-solidified in less than one thousandth of a second, the resulting changes in the material can lead to:
Increased wear and corrosion resistance,
Improved surface finish and appearance,
Enhanced surface uniformity and purity, and
Sealing of surface cracks and pores.
The quality of the material used for highly loaded critical gears is of primary importance in the achievement of their full potential. Unfortunately, the role which material defects play is not clearly understood by many gear designers. The mechanism by which failures occur due to material defects is often circuitous and not readily apparent. In general, however, failures associated with material defects show characteristics that point to the source of the underlying problem, the mechanism by which the failure initiated, and the manner in which it progressed to failure of the component.
Increased productivity in roughing operations for gear cutting depends mainly on lower production costs in the hobbing process. In addition, certain gears can be manufactured by shaping, which also needs to be taken into account in the search for a more cost-effective form of production.
Quality gear manufacturing depends on controlled tolerances and geometry. As a result, ferritic nitrocarburizing has become the heat treat process of choice for many gear manufacturers. The primary reasons for this are:
1. The process is performed at low temperatures, i.e. less than critical.
2. the quench methods increase fatigue strength by up to 125% without distorting. Ferritic nitrocarburizing is used in place of carburizing with conventional and induction hardening.
3. It establishes gradient base hardnesses, i.e. eliminates eggshell on TiN, TiAIN, CrC, etc.
In addition, the process can also be applied to hobs, broaches, drills, and other cutting tools.