The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.
Compared to non-heat-treated components, case-carburized gears are characterized by a modified strength profile in the case-hardened layer. The design of case-carburized gears is based on defined allowable stress numbers. These allowable stress numbers are valid only for a defined "optimum" case depth. Adequate heat treatment and optimum case depth guarantee maximum strength of tooth flank and tooth root.
This article describes a method and a computer program that were developed for 3-D finite element analysis of long-fiber reinforced composite spur gears, in which long fibers are arranged along tooth profiles. For such a structure, the gear is composed of two regions; namely the long fiber reinforced and the chopped-fiber reinforced regions.
In recent years, improvements in the reliability of the vacuum carburizing process have allowed its benefits to be realized in high-volume, critical component manufacturing operations. The result: parts with enhanced hardness and mechanical properties.
Plastics as gear materials represent an interesting development for gearing because they offer high strength-to-weight ratios, ease of manufacture and excellent tribological properties (Refs. 1-7). In particular, there is a sound prospect that plastic gears can be applied for power transmission of up to 10 kW (Ref. 6).
Effective gear designs balance strength, durability, reliability, size, weight, and cost. Even effective designs, however, can have the possibility of gear cracks due to fatigue. In addition, truly robust designs consider not only crack initiation, but also crack propagation trajectories. As an example, crack trajectories that propagate through the gear tooth are the preferred mode of failure compared to propagation through the gear rim. Rim failure will lead to catastrophic events and should be avoided. Analysis tools that predict crack propagation paths can be a valuable aid to the designer to prevent such catastrophic failures.
Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.
Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.
In recent years, the demands for load capacity and fatigue life of gears constantly increased while weight and volume had to be reduced. To achieve those aims, most of today's gear wheels are heat treated so tooth surfaces will have high wear resistance. As a consequence of heat treatment, distortion unavoidably occurs. With the high geometrical accuracy and quality required for gears, a hard machining process is needed that generates favorable properties on the tooth surfaces and the near-surface material with high reliability.
Economic production is one of the main concerns of any manufacturing facility. In recent years, cost increases and tougher statutory requirements have increasingly made cutting fluids a problematic manufacturing and cost factor in metalworking. Depending on the cutting fluid, production process and supply unit, cutting-fluid costs may account for up to 16% of workpiece cost. In some cases, they exceed tool cost by many times (Ref. 1). The response by manufacturers is to demand techniques for dry machining (Ref. 2).