Bevel gear systems are particularly sensitive to improper assembly. Slight errors in gear positioning can turn a well-designed, quality manufactured gear set into a noisy, prone-to-failure weak link in your application.
In addition to the face milling system, the face hobbing process has been developed and widely employed by the gear industry. However, the mechanism of the face hobbing process is not well known.
This paper presents a new approach in roll testing technology of spiral bevel and hypoid gear sets on a CNC roll tester applying analytical tools, such as vibration noise and single-flank testing technology.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.
Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.