This article is the fourth installment in Gear Technology's series of excerpts from
Dr. Hermann J. Stadtfeld's book, Gleason Bevel Gear Technology. The first three
excerpts can be found in our June, July and August 2015 issues.
In the previous chapter, we demonstrated the development of a face-milled spiral bevel gearset. In this section, an analogue face-hobbed bevel gearset is derived.
This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.
Bringing new or improved products to
market sooner has long been proven profitable for companies. One way to help shorten the time-to-market is to accelerate validation testing. That is, shorten the test time required to validate a new or improved product.
In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.