This paper relates specifically to gears that are finish ground and considered high speed per ANSI/AGMA 6011; meshing elements with PLVs (pitch line velocities) in excess of 35 m/s or rotational speeds greater than 4,500 rpm.
AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles
ranging from SAE Class 3 through Class 8.
In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.
Surface coatings or finishing processes are the future technologies
for improving the load carrying capacity of case hardened gears. With
the help of basic tests, the influence of different coatings and finishing
processes on efficiency and resistance to wear, scuffing, micropitting,
and macropitting is examined.
The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.
The phenomena of deterioration of surfaces are generally very complex and depend on numerous conditions which include the operating conditions, the type of load applied, the relative speeds of surfaces in contact, the temperature, lubrication, surfaces hardness and roughness, and the compatibility and nature of materials.
A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.
In ParI 1 several scuffing (scoring) criteria were shown ultimately to converge into one criterion, the original flash temperature criterion according to Blok. In Part 2 it will be shown that all geometric influences may be concentrated in one factor dependent on only four independent parameters, of which the gear ratio, the number of teeth of the pinion, and the addendum modification coefficient of the pinion are significant.
The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van
Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.