A meaningful discussion about noise is quite difficult because the impression of "noise" is quite subjective. Everybody has a lifetime experience with sound / noise and sees themselves as an expert.
This proposed standard would not make any recommendations
regarding the required quality for any application. The
intent is to establish standard pre-finish quality classes for typical
finishing operations, which only include the inspection elements
that are important to properly evaluate pre-finish gear
quality as it applies to the finishing operation. It would be the
responsibility of the manufacturing/process engineer, quality
engineer, or other responsible individual to establish the
required pre-finish quality class for their application.
Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
How well you conduct your inspections can be the difference-maker for securing high-value contracts from your
customers. And as with most other segments of the gear industry,
inspection continues striving to attain “exact science” status. With that thought in mind, following is a look at the state of gear inspection and what rigorous inspection practices deliver—quality.
The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.
AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.
This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.
I support Clem Miller (Viewpoint May/June) in his skepticism of ISO 9000. The metrology of gears is important, but in the present state of the art, manufacture is more accurate than design.
Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.