It's a buyer's market these days on solutions for our country's economic problems. Everybody with access to a t.v. camera or a publisher is telling us what we need to do. Usually their solution involves either buying their book or tape or electing them to office.
The term "blanking" refers to the initial metal cutting operations in the process planning sequence which produce the contour of a part starting from rough material.
The scope of blanking is:
To remove the excess material
To machine the part to print specifications, except for those surfaces with subsequent finishing operations.
To leave adequate machining stock for finishing operations.
To prepare good quality surfaces for location and clamping of the part throughout the process.
The availability of technical software has grown rapidly in the last few years because of the proliferation of personal computers. It is rare to find an organization doing technical work that does not have some type of computer. For gear designers and manufacturers, proper use of the computer can mean the difference between meeting the competition or falling behind in today's business world. The right answers the first time are essential if cost-effective design and fabrication are to be realized. The computer is capable of optimizing a design by methods that are too laborious to undertake using hard calculations. As speeds continue to climb and more power per pound is required from gear systems, it no longer is possible to design "on the safe side" by using larger service factors. At high rotational speeds a larger gear set may well have less capacity because of dynamic effects. The gear engineer of today must consider the entire gear box or even the entire rotating system as his or her domain.
Temperature Induced Dimensional Changes
Temperature causes various materials to change size at different rate, known as their Coefficients of Expansion (COE). The effects of this phenomenon on precision dimensional measurements are continuous and costly to industry. Precautions can be taken to allow parts and gages to temperature stabilize before conducting gage R & R studies, but the fact remains that on the shop floor temperatures vary all the time. The slow pace at which industry has accepted this reality probably has to do with the subtlety of these tiny size variations and our inability to sense gradual, but significant temperature changes.
When I was new to gear engineering, I found the array of gear literature scare, and the information scattered and conflicting. After investigating the materials available, I set the goal of creating an annotated listing of the references. There are many valuable resources, but for this article I have selected ten of the best. These references, in my opinion, are the most useful, and cover the scope while minimizing redundancy.
Cost cutting. It's the aerobics of the 90s for businesses large and small. More than just the latest buzzword or 90-second flash-in-the-panacea, it's a survival technique. Companies that aren't trimming the fat now may not be around in five years to regret that they didn't.