The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.
This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.
Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout.
Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.
Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.
An accurate and fast calculation method is developed to determine the value of a trigonometric function if the value of another trigonometric function is given. Some examples of conversion procedures for well-known functions in gear geometry are presented, with data for accuracy and computing time. For the development of such procedures the complete text of a computer program is included.
After shaping or hobbing, the tooth flanks must be either chamfered or duburred. Here it is paramount that the secondary burr produced will not be formed into the flank, but to the face of the gear, because during hardening, the secondary burr will straighten up and, due to its extreme hardness, will lead to excessive tool wear.
This article deals with certain item to be taken into consideration for gear grinding, common problems that arise in gear grinding and their solutions. The discussion will be limited to jobbing or low-batch production environments, where experimental setup and testing is not possible for economic and other reasons.
Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.
Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.