The following is a general overview of some of the different factors that lead to the specific design. and the selection of the correct tool for a given hobbing application.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index,
helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations
in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase
the gear's load carrying capacity, its factor of safety and its service life.
The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a
good understanding of profile calculations is very important.
Much of the information in this article
has been extracted from an AGMA
Technical Paper, "What Single Flank
Testing Can Do For You", presented in
1984 by the author
Much information has been written on gear inspection, analytical. functional. semiautomatic and automatic. In most
cases, the charts, (if you are lucky enough to have recording
equipment) have been explained.
In designing involute gear teeth, it is essential that the fundamental
properties of the involute curve be clearly understood. A review of "the Fundamental Laws of the Involute Curve"
found in last issue will help in this respect. It has previously been shown that the involute curve has its origin at the base circle. Its length, however, may be anything from zero at the origin or starting point on to infinity. The problem, therefore, in designing gear teeth, is to select that portion of the involute, which will best meet all requirements.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces
of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.
A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing
coated tools are considered in terms of both tool cost and machining cost.