The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.
This article describes a method and a computer program that were developed for 3-D finite element analysis of long-fiber reinforced composite spur gears, in which long fibers are arranged along tooth profiles. For such a structure, the gear is composed of two regions; namely the long fiber reinforced and the chopped-fiber reinforced regions.
Effective gear designs balance strength, durability, reliability, size, weight, and cost. Even effective designs, however, can have the possibility of gear cracks due to fatigue. In addition, truly robust designs consider not only crack initiation, but also crack propagation trajectories. As an example, crack trajectories that propagate through the gear tooth are the preferred mode of failure compared to propagation through the gear rim. Rim failure will lead to catastrophic events and should be avoided. Analysis tools that predict crack propagation paths can be a valuable aid to the designer to prevent such catastrophic failures.
Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.
Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).
The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.
Users of gear-cutting tools probably do not often consciously consider the raw material from which those hobs, broaches or shavers are made. However, a rudimentary awareness of the various grades and their properties may allow tool users to improve the performance or life of their tools, or to address tool failures. The high-speed steel from which the tool is made certainly is not the only factor affecting tool performance, but as the raw material, the steel may be the first place to start.
A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).
Two-shaft planetary gear drives are power-branching transmissions, which lead the power from input to output shaft on several parallel ways. A part of the power is transferred loss-free as clutch power. That results in high efficiency and high power density. Those advantages can be used optimally only if an even distribution of load on the individual branches of power is ensured. Static over-constraint, manufacturing deviations and the internal dynamics of those transmission gears obstruct the load balance. With the help of complex simulation programs, it is possible today to predict the dynamic behavior of such gears. The results of those investigations consolidate the approximation equations for the calculation of the load factors...
For high-quality carburized, case hardened gears, close case carbon control is essential.
While tight carbon control is possible, vies on what optimum carbon level to target can be wider than the tolerance.