Electrification has already started to have a noticeable impact on the global automotive industry. As a result, the drivetrains of hybrid (HEV) and full electric vehicles (EV) are facing many challenges, like increased requirements for NVH in high speed e-Drives and the need for performance improvements to deal with recuperation requirements. Motivated by the positive validation results of surface densified manual transmission gears which are also applicable for dedicated hybrid transmissions (DHTs) like
e-DCTs, GKN engineers have been looking for a more challenging application
for PM gears within those areas.
Deburring or chamfering of gear teeth is gaining attention in practical settings. And with a view to make the production sequence as efficient as possible, it is becoming increasingly important to be able to implement the deburring tasks directly on the cutting machine after spiral cutting.
Chamfering and deburring have been described as "unloved," a "necessary evil" and, in fact - "dead." After all, manual deburring is still common in many shops.
Highly loaded gears are usually casehardened to fulfill the high demands on
the load-carrying capacity. Several factors, such as material, heat treatment, or macro and micro geometry, can influence the load-carrying capacity. Furthermore, the residual stress condition also significantly
influences load-carrying capacity. The residual stress state results from heat treatment and can be further modified by manufacturing processes post heat treatment, e.g. grinding or shot peening.