Arrow Gear Company of Downers Grove, IL, has implemented a computer system that fully integrates exchange between all of its computer applications. The ELIMS (Electronic Linkage of Information Management Systems) project has increased manufacturing productivity and reduced lead times.
It used to be that a shop with hustle and plenty of big, fast machines could thrive using a manual system. But no more. Today's economic environment requires more and more in the way of topnotch service and quick turnaround - which frequently means a completely integrated shop floor control system.
Good References
In the 7th Edition of McGraw Hill Encyclopedia of Science and Technology, 10 pages are devoted to the subjects of Gears, Gear Cutting and Gear Trains.
Robots, computers and other signs of high technology abounded at IMTS 94, supporting the claim by many that this was one of the best shows ever. Many of the machines on display had so many robotic attachments and computer gizmos that they looked more like they belonged in some science fiction movie than on the floor of a machine shop.
McCormick Place, Chicago. A manufacturer's dream. Acres and acres of machine tools up and running - cutting chips, filling molds, moving material, bending, shaping, smoothing, measuring. Computers, robots and lasers everywhere - George Lucas goes to engineering school. Sounds, light and, most important, over 100,000 people, moving around, taking notes, asking questions and, above all, buying. This was IMTS '94. A heady, if tiring, experience.
The two reports referred to in this article, "The people wise Organization" and "House Divided: Views on Change from Top Management - and Their Employees," crossed our desks some weeks ago. They stimulated a fair amount of discussion here, and we hope they do the same in your offices. We welcome your responses. How do you view the corporate/competitive environment of the next few years? How do you see yourself and your company fitting in? Can these ideas work in the gear industry? Let us now what you think.
For environmental and economic reasons, the use of coolant in machining processes is increasingly being questioned. Rising coolant prices and disposal costs, as well as strains on workers and the environment, have fueled the debate. The use of coolant has given rise to a highly technical system for handling coolant in the machine (cooling, filtering) and protecting the environment (filter, oil-mist collector). In this area the latest cutting materials - used with or without coolant - have great potential for making the metal-removal process more economical. The natural progression to completely dry machining has decisive advantages for hobbing.
The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.
I support Clem Miller (Viewpoint May/June) in his skepticism of ISO 9000. The metrology of gears is important, but in the present state of the art, manufacture is more accurate than design.