Getting rid of personal mementos is an arduous housekeeping ritual for some
of us; every last gear has a memory. One man’s trash is another man’s gold, after all, or in some cases, one failed business is a forgotten piece of personal and mechanical genealogy. Such is the case of the Hill-Climber chainless bicycle, the remains of which were pulled from a family junk pile after nearly half a century.
The objective of this paper is to demonstrate that transmission gears
of rotary-wing aircraft, which are typically scrapped due to minor foreign
object damage (FOD) and grey staining, can be repaired and re-used with
signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated
in this project that this surface damage can be removed while maintaining
OEM specifications on gear size, geometry and metallurgy. Further, scrap
CH-46 mix box spur pinions, repaired by the ISF process, were subjected to
gear tooth strength and durability testing, and their performance compared
with or exceeded that of new spur pinions procured from an approved
Navy vendor. This clearly demonstrates the feasibility of the repair and
re-use of precision transmission gears.
When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing
process when control of the heat generation at the surface is lost.
Today’s ever-evolving global economic engine is, in many ways, a wonderful phenomenon; you know—a rising-tide-lifting-all-boats, trickle-down-theory-of-economics dynamic at work.