The properties of both shot-peened and cold rolled PM gears are analyzed and
compared. To quantify the effect of both manufacturing processes, the tooth root
bending fatigue strength will be evaluated and compared to wrought gears.
Powder metal (PM) gears normally sell due to the lower cost and their relatively high mechanical performance. The reason behind the lower cost is that most of the machining is omitted due to the net-shape forming process. So how net-shape are powder metal gears? In this article some hard-to-find information about the tolerances through the manufacturing steps will be presented.
This paper analyzes the different influences of the deviations between nominal and actual geometry for a first-cut bevel gear. In each section, the customary tolerances are quantified and the possibilities to reduce them are discussed.
Electrification has already started to have a noticeable impact on the global automotive industry. As a result, the drivetrains of hybrid (HEV) and full electric vehicles (EV) are facing many challenges, like increased requirements for NVH in high speed e-Drives and the need for performance improvements to deal with recuperation requirements. Motivated by the positive validation results of surface densified manual transmission gears which are also applicable for dedicated hybrid transmissions (DHTs) like
e-DCTs, GKN engineers have been looking for a more challenging application
for PM gears within those areas.
Highly loaded gears are usually casehardened to fulfill the high demands on
the load-carrying capacity. Several factors, such as material, heat treatment, or macro and micro geometry, can influence the load-carrying capacity. Furthermore, the residual stress condition also significantly
influences load-carrying capacity. The residual stress state results from heat treatment and can be further modified by manufacturing processes post heat treatment, e.g. grinding or shot peening.
Press quenching is designed to harden steel gears while minimizing distortion, and the process is especially applied for hardening large diameter thin-wall gears, face gears and bevel gears. The dimensional control aims at maintaining flatness, out-of-round, straightness and consistency of radial size. The press quench tooling and the process design have been mainly experience-based, using a trial and error approach for implementation of new processes, new gear materials and gear configurations.
There are many different gear rating methods in use today, and they can give substantially different results for any given gearset. This paper will make it easy to understand the choices and the impact the choices have on gearbox design. Eight standards are included - AGMA 2001; AGMA 6011; AGMA 6013; ISO 6336; API 613; API 617; API 672; and API 677. (Click HERE for the Appendix to this article).
In today's production environment, a variety of different measurement devices is used to assess the quality and accuracy of workpieces. These devices include CMMs, gear checkers, form testers, roughness testers, and more. It requires a high machine investment and a high handling effort - especially if a full end-of-line measurement is needed. One approach to reduce quality costs is to include all measurements in one single machine that is suitable and robust enough for use in production.