This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.
Bevel gears must be assembled in a specific way to ensure smooth running and optimum load distribution between gears. While it is certainly true that the "setting" or "laying out" of a
pair of bevel gears is more complicated than laying out a pair of spur gears, it is also true that following the correct procedure can make the task much easier. You cannot install bevel gears in the same manner as spur and helical gears and expect them to behave and perform as well; to optimize the performance of any two bevel gears, the gears must be positioned together so that they run smoothly without binding and/or excessive backlash.
Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting
risk. Verification of this new method through testing is demonstrably shown.
It is widely recognized that the reduction of CO2 requires consistent
light-weight design of the entire vehicle. Likewise, the trend towards electric cars requires light-weight design to compensate for the additional weight of battery systems. The need for weight reduction is also present regarding vehicle transmissions. Besides the design of the gearbox housing, rotating masses such as gear wheels and shafts have a significant impact on fuel consumption. The current technology shows little potential of gear weight reduction due to the trade-off between mass optimization and the manufacturing process. Gears are usually forged followed or not by teeth cutting operation.
Composite spur gears were designed, fabricated and tested at NASA Glenn Research Center. The composite web was
bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The hybrid gear was tested against an all-steel gear and against a mating hybrid gear. Initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.
A gear design optimization approach applied to reduce tooth contact temperature and noise excitation of a high-speed spur gear pair running without lubricant. Optimum gear design search was done using the Run Many Cases software program. Thirty-one of over 480,000 possible gear designs were considered, based on low contact temperature and low transmission error. The best gear design was selected considering its manufacturability.
Audits of the heat treating department
are a vital part of any good quality program - either as part of a self-assessment or ISO program for a captive shop or - of equal importance - as part of an evaluation of the capabilities of a commercial heat treat supplier. In either case, the audit process needs to be formal in nature and follow specific guidelines.
The research presented here is part of an ongoing (six years to date) project of the Cluster of Excellence (CoE). CoE is a faculty-wide group of researchers from RWTH Aachen University in Aachen (North Rhine-Westphalia). This presentation is a result of the group’s examination of "integrative production technology for high-wage countries," in which a shaft for a dual-clutch gearbox is developed.
This paper proposes a method for the manufacture of a replacement pinion for an existing, large-sized skew bevel gear using multi-axis control and multitasking machine tool.