Alongside the macro test parameters on tooth flanks for profile and tooth traces, surface
properties (roughness) play a decisive role in ensuring proper toothed gear function. This
article addresses roughness measurement systems on tooth flanks. In addition to universal
test equipment, modified test equipment based on the profile method for use on gears is
addressed in particular. The equipment application here refers to cylindrical gear flanks and
bevel gear flanks. The most important roughness parameters, as well as the implementation
of the precise measurement procedure will also be described under consideration of the
applicable DIN EN ISO standards as well as the current VDI/VDE Directive 2612 Sheet 5.
This paper presents the geometric design of hypoid gears with involute gear teeth. An
overview of face cutting techniques prevalent in hypoid gear fabrication is presented. Next,
the specification of a planar involute rack is reviewed. This rack is used to define a variable
diameter cutter based upon a system of cylindroidal coordinates; thus, a cursory presentation
of cylindroidal coordinates is included. A mapping transforms the planar involute rack into a variable diameter cutter using the cylindroidal coordinates. Hypoid gears are based on the envelope of this cutter. A hypoid gear set is presented based on an automotive rear axle.
The geometry of the bevel gear is quite complicated to describe mathematically, and much of the overall surface topology of the tooth flank is dependent on the machine settings and cutting method employed. AGMA 929-A06 — Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius — lays out a practical approach for predicting the approximate top-land thicknesses at certain points of interest — regardless of the exact machine settings that will generate the tooth form. The points of interest that AGMA 929-A06 address consist of toe, mean, heel, and point of involute lengthwise curvature. The following method expands upon the concepts described in AGMA 929-A06 to allow the user to calculate not only the top-land thickness, but the more general case as well, i.e. — normal tooth thickness anywhere along the face and profile of the bevel gear tooth. This method does not rely on any additional machine settings; only basic geometry of the cutter, blank, and teeth are required to calculate fairly accurate tooth thicknesses. The tooth thicknesses are then transformed into a point cloud describing both the convex and concave flanks in a global, Cartesian coordinate system. These points can be utilized in any modern computer-aided design software package to assist in the generation of a 3D solid model; all pertinent tooth macrogeometry can be closely simulated using this technique. A case study will be presented evaluating the accuracy of the point cloud data compared to a physical part.
This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.
One process for hard finishing gears is generating gear grinding. Due to its high process efficiency, generating gear grinding has replaced other grinding processes such as profile grinding in batch production of small- and middle-sized gears. Yet despite the wide industrial application of generating gear grinding, the process design is based on experience along with time- and cost-intensive trials. The science-based analysis of generating gear grinding demands a high amount of time and effort, and only a few published scientific analyses exist. In this report a thermo-mechanical process model that describes influences on the surface zone in generating gear grinding is introduced.
The recently available capability for the free-form milling of gears of various gear types and sizes — all within one manufacturing system — is becoming increasingly recognized as a flexible machining process for gears.
The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant
film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive data set. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures.
Introduction
The standard profile form in cylindrical
gears is an involute. Involutes are
generated with a trapezoidal rack — the
basis for easy and production-stable
manufacturing (Fig. 1).
When compared with the traditional gear design approach - based on pre-selected, typically standard generating rack parameters - the alternative Direct Gear Design method provides certain advantages for custom, high-performance gear drives.
This article discusses applications of statistical process capability indices for controlling the quality of tooth geometry characteristics, including profile and lead as defined by current AGMA-2015, ISO-1328, and DIN-3960 standards. It also addresses typical steps to improve manufacturing process capability for each of the tooth geometry characteristics when their respective capability indices point to an incapable process.