When designing a gear set, engineers usually want the teeth of the gear (Ng) and the pinion (Np) in a "hunting" mesh. Such a mesh or combination is defined as one in which the pinion and the gear do not have any common divisor by a prime number. If a mesh is "hunting," then the pinion must make Np x Ng revolutions before the same pinion tooth meshes with the same gear space. It is often easy to determine if a mesh is hunting by first determining if both the pinion and the gear teeth are divisible by 2,3,5,7,etc. (prime numbers). However, in this age of computerization, how does one program the computer to check for hunting teeth? A simple algorithm is shown below.
Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.
The Instrumented Factory for Gears (INFAC) conducted a metallurgical experiment that examined the effects of carburizing process variables and types of cryogenic treatments in modifying the microstructure of the material. The initial experiment was designed so that, following the carburizing cycles, the same test coupons could be used in future experiment.
Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.
The process of nitriding has been used to case harden gears for years, but the science and technology of the process have not remained stagnant. New approaches have been developed which are definitely of interest to the gear designer. These include both new materials and new processing techniques.
Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gear set through mesh. With the advent of user-specific programming linked to 3-D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gear set it placed in mesh, user subroutines attached to the FE code easily roll it through mesh. The method is described in detail. Preliminary result for a gear set segment showing the progression of the contact line load is given as the gears roll through mesh.
Electroless Nickel (EN) plating, a process dating back to the 1940s, is one of the predominant metal finishing methods today. It is especially suitable for the gear industry, whose end uses span innumerable other industries, providing an endless assortment of requirements, environments, materials and specifications. EN plating has a broad array of functional features, which include:
This article summarizes the development of an improved titanium nitride (TiN) recoating process, which has, when compared to conventional recoat methods, demonstrated tool life increases of up to three times in performance testing of hobs and shaper cutters. This new coating process, called Super TiN, surpasses the performance of standard TiN recoating for machining gear components. Super TiN incorporates stripping, surface preparation, smooth coating techniques and polishing before and after recoating. The combination of these improvements to the recoating process is the key to its performance.
The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.
Statistical Precess Control (SPC) and statistical methods in general are useful techniques for identifying and solving complex gear manufacturing consistency and performance problems. Complex problems are those that exist in spite of our best efforts and the application of state-of-the-art engineering knowledge.