Vibration and noise from wind turbines can be significantly influenced - and therefore reduced - by selecting suitable gearing modifications. New options provided by manufacturers of machine tools and grinding machines, and especially state-of-the-art machines and controls, provide combined gearing modifications - or topological gearing corrections - that can now be reliably machined. Theoretical investigations of topological modifications are discussed here with the actual machining and their possible use.
Tiger stripes on a high-speed pinion made of a carburized SAE 9310 steel were investigated. The morphology of the damage was typical of electric discharge damage. The cause of the stripes and potential damage to the gear tooth were analyzed and are presented in this report.
A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.
The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.
Dressable vitrified bond CBN grinding tools combine the advantages of other common tool systems in generating gear grinding. Yet despite those technological advantages, there is only a small market distribution of these grinding tools due to high tool costs. Furthermore, scant literature exists regarding generating gear grinding with dressable CBN. This is especially true regarding the influence of the grinding tool system on manufacturing-related component properties. The research objective of this report is to determine the advantages of dressable CBN tools in generating gear grinding.
Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
Precision components (industrial bearing races and automotive gears) can distort during heat treatment due to effects of free or unconstrained oil quenching. However, press quenching can be used to minimize these effects. This quenching method achieves the relatively stringent geometrical requirements stipulated by industrial manufacturing specifications. As performed on a wide variety of steel alloys, this specialized quenching technique is presented here, along with a case study showing the effects of prior thermal history on the distortion that is generated during press quenching.
The heat treatment processing of powder metal (PM) materials like Astaloy requires four steps -- de-waxing, HT sintering, carburizing and surface hardening -- which are usually achieved in dedicated, atmospheric furnaces for sintering and heat treat, respectively, leading to intermediate handling operations and repeated heating and cooling cycles. This paper presents the concept of the multi-purpose batch vacuum furnace, one that is able to realize all of these steps in one unique cycle. The multiple benefits brought by this technology are summarized here, the main goal being to use this technology to manufacture high-load transmission gears in PM materials.
Much of the existing guidelines for making large, high-performance gears for wind turbine gearboxes exhibit a need for improvement. Consider: the large grinding stock used to compensate for heat treatment distortion can significantly reduce manufacturing productivity; and, materials and manufacturing processes are two other promising avenues to improvement. The work presented here investigates quenchable alloy steels that, combined with specifically developed Case-hardening and heat treatment processes, exhibits reduced distortion and, in turn, requires a smaller grinding stock.
Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.