Hypoid gears are the paragon of gearing. To establish line contact between the pitches in hypoid gears, the kinematically correct pitch surfaces have to be determined based on
the axoids. In cylindrical and bevel gears, the axoids are identical to the pitch surfaces and their diameter or cone angle can be calculated simply by using the knowledge about number of teeth and module or ratio and shaft angle. In hypoid gears, a rather complex approach is required to find the location of the teeth—even before any information about flank form can
be considered. This article is part seven of an eight-part series on the tribology aspects of angular gear drives.
Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses
relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.
The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.
Beveloids are helical gears with nonparallel shafts, with shaft angles generally between 5 degrees and 15 degrees. This is part VI in the Tribology Aspects in Angular Transmission Systems Series
In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the
optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable
load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.
This article is part five of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.
This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.
Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root
interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more
severe near the start-of-active-profile (SAP) of the driving gear.