Austempered irons and steels offer the design engineer alternatives to conventional material/process combinations. Depending on the material and the application, austempering may provide the producers of gear and shafts with the following benefits: ease of manufacturing, increased bending and/or contact fatigue strength, better wear resistance or enhanced dampening characteristics resulting in lower noise. Austempered materials have been used to improve the performance of gears and shafts in many applications in a wide range of industries.
The tooth-by-tooth, submerged induction hardening process for gear tooth surface hardening has been successfully performed at David Brown for more than 30 years. That experience - backed up by in-depth research and development - has given David Brown engineers a much greater understanding of, and confidence in, the results obtainable from the process. Also, field experience and refinement of gear design and manufacturing procedures to accommodate the induction hardening process now ensure that gears so treated are of guaranteed quality.
For high-quality carburized, case hardened gears, close case carbon control is essential.
While tight carbon control is possible, vies on what optimum carbon level to target can be wider than the tolerance.
This report presents some interim results from an ongoing project being performed by INFAC, the Instrumented Factory for Gears. The purposes of this initial phase of the project were to demonstrate the feasibility of robotic automated deburring of aerospace gears, and to develop a research agenda for future work in that area.
The implementation of powder metal (PM)components in automotive applications increases continuously, in particular for more highly loaded gear components like synchromesh mechanisms. Porosity and frequently inadequate material properties of PM materials currently rule out PM for automobile gears that are subject to high loads. By increasing the density of the sintered gears, the mechanical properties are improved. New and optimized materials designed to allow the production of high-density PM gears by single sintering may change the situation in the future.
In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.
The goal of gear drive design is to transit power and motion with constant angular velocity. Current trends in gear drive design require greater load carrying capacity and increased service life in smaller, quieter, more efficient gearboxes. Generally, these goals are met by specifying more accurate gears. This, combined with the availability of user-friendly CNC gear grinding equipment, has increased the use of ground gears.
Bridge cranes are among the most useful machines in many branches of modern industry. Using standard hooks or other specialized clamping devices, they can lift, transport, discharge, and stack a variety of loads.
Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).
During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.