Small worm – great potential
KAPP NILES
Gearboxes used in electric vehicles are not only designed for high speeds and high torques – they are also very compact. This is not only true for the automotive sector, but also – and above all – for innovative types of applications such as e-bikes. These small but high-power and electrically driven gearboxes inspire design engineers to come up with more creative solutions. In many cases, they comprise small components with interfering contours, which pose new challenges for production. When it comes to the hard finishing of the gear teeth, the process-related potential goes hand in hand with high production costs. The most economical option is probably generating grinding. However, not all generating grinding machines are suitable for the production of the compact components. This article outlines the relevant demands and demonstrates possible solutions.
Transmission manufacturing does not have to be reinvented to become suitable for the e-mobility sector, but there are definitely some new challenges to be faced. These include, above all, the high power density and the compact installation space in which the entire power train must be accommodated. At the same time, the new areas of application are opening up new sales opportunities: e-bikes, for example, have recently gained in popularity. They significantly enhance range and transportation capacities in everyday life and during leisure time. Correspondingly high is the demand. This benefits the manufacturers and their suppliers – gearbox manufacturers among them. However, be it two or four wheels: The drive technology is sophisticated. The focus is on the required flank load capacities and the noise behaviour of the gear teeth due to the boundary conditions imposed by the electric drive motor – an almost constant high torque over the speed range of 0 – 18,000 rpm. However, new challenges are not only limited to the machined parts but also directly affect the manufacturing process: Due to the compact design, an increasing number of components with interfering contours emerge in the gearbox design. Large tools with standard dimensions of the worm grinding wheel quickly and literally meet their limits. To avoid having to resort to more time-consuming and thus more expensive processes, the tools must also be miniaturised.
Identify and overcome boundaries
Up to now, the hard finishing of gears with interfering contours has mainly been accomplished by discontinuous profile grinding or gear honing.
Compared to continuous generating grinding, both aforementioned processes feature different disadvantages in terms of productivity, economic efficiency or quality consistency. The problem is that the common grinding worms measuring 300 mm in diameter are too large to handle components with interfering contours. At the same time, smaller tools require higher speeds in order to achieve high cutting speeds. However, previously implemented machine concepts were not designed for the high dynamic requirements regarding tool and workpiece drive. New types of high-speed spindles in combination with a dynamic direct drive of the workpiece axis offer a solution. This enables the exploitation of the advantages provided by generating grinding – a process that features shorter machining times, lower tool costs and a very high level of quality consistency. The economic efficiency of generating grinding in direct comparison to profile grinding can be demonstrated by means of the two selected components "car" and "bike" (as shown in Figures 1 and 2). The corresponding tables ("Car" and "Bike") provide an overview of the related time and cost benefits.
Figure 1 Workpiece “bike”: Tip diameter: 11.8 mm; module: 0.72 mm, number of teeth: 13, face width: 12 mm | |
![]() | ![]() |
Figure 2 | |
![]() | ![]() |
The right machines to cover the requirements
The Coburg-based machine tool manufacturer KAPP NILES specialised in system solutions for grinding gears offers two machine types for meeting the above-mentioned customer requirements. Both series are equipped with high-efficiency drives for the tools (25,000 rpm) and the workpieces (5,000 rpm).