One way to implement the growing performance requirements for transmissions is by optimizing the surface finish of the gearing. In addition to increasing the flank load capacity and the transmittable torque, this also allows for improvements in efficiency. On Oerlikon bevel gear grinding machines from Klingelnberg, fine grinding
can be implemented efficiently in bevel gear production - even in an industrial serial process.
To achieve the requested quality, most gears today are ground. The usual grinding process includes treating the gear flank but disengaging before reaching the root rounding area. If the gear is premanufactured with a tool without protuberance, then at the position where the grinding tool retracts from the flank a grinding notch in the tooth root area is produced. Such a notch may increase the bending stresses in the root area, thus reducing the strength rating.
Cubic Boron Nitride (cBN) abrasive wheels, which are a specially engineered abrasive grain referred to as a superabrasive, typically yield 2,200 - 2,500 parts per dress with one wheel lasting as long
as four to six months.
Highly loaded gears are usually casehardened to fulfill the high demands on
the load-carrying capacity. Several factors, such as material, heat treatment, or macro and micro geometry, can influence the load-carrying capacity. Furthermore, the residual stress condition also significantly
influences load-carrying capacity. The residual stress state results from heat treatment and can be further modified by manufacturing processes post heat treatment, e.g. grinding or shot peening.
With increasingly smaller returns from improving the speed of the actual gear grinding process, improving your setup time has become a primary way to keep improving efficiency. Here's the latest on how you can do that today.