It's the year of the quick-change
tool. From chucks to mandrels,
workholding manufacturers
across the industry are seeing
a continuing trend from their
customers: give us more quickchange.
The cutting process consists of either
a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter
profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by
the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).
Could you explain to me the difference between spiral bevel gear process face hobbing-lapping, face milling-grinding and Klingelnberg HPG? Which one is better for noise, load capacity and quality?
Plastic gears are everywhere
today - throughout your car, at
the oceans' lowest depths, in deep
space. The question, when is a
metal gear a candidate for plastic
conversion, can be addressed in
three words, i.e. what's the application?
Chapter 2, Continued
In the previous sections, development of conjugate, face milled as well as face hobbed bevel gearsets - including the application of profile and length crowning - was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. - how it is applied to bevel and hypoid
gears and then expands on profile side shift, and the frequently used root angle correction which - from its gear theoretical
understanding - is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on
five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the
bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following
chapters, some of which also will be covered in this series.