Product announcements so often trumpet minor, incremental advances with works like "revolutionary" and "unique" that even the best thesaurus can fail to offer a fresh alternative to alert the reader when something really innovative and important is introduced. In the case of Mitsubishi's new CNC gear shaper, the ST25CNC, both terms apply.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.
In 1961 I presented a paper, "Calculating Conjugate Helical Forms," at the semi-annual meeting of the American Gear Manufacturers Association (AGMA). Since that time, thousands of hobs, shaper cutters and other meshing parts have been designed on the basis of the equations presented in that paper. This article presents the math of that paper without the formality of its development and goes on to discuss its practical application.
Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.
The aim of this article is to show a practical procedure for designing optimum helical gears. The optimization procedure is adapted to technical limitations, and it is focused on real-world cases. To emphasize the applicability of the procedure presented here, the most common optimization techniques are described. Afterwards, a description of some of the functions to be optimized is given, limiting parameters and restrictions are defined, and, finally, a graphic method is described.
Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.
A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.
An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.
The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.