Methods of examining large ring gear
teeth to detect surface breaking discontinuities have often been time-consuming and limited in terms of data collected. Methods such as visual and magnetic particle inspection can miss critical discontinuities. However, a new ASTM international standard provides a more effective method for gear examination using eddy current array, a technology that has been widely used but, until now, not standardized.
This paper introduces mandatory improvements in design, manufacturing and inspection - from material elaboration to final machining - with special focus on today's large and powerful gearing.
The large gears found in mining, steel, construction, off-road, marine and energy applications—massive and
robust in nature—need to tackle the greatest production demands. This, in turn, means that a special emphasis must be put on the heat treating methods used to increase the wear resistance and strength properties of gears this size.
In the wide, wide world of moving
parts, the gears required for the big
jobs—the really big jobs—often experience big problems. Proper lubrication of these gears is paramount in industrial applications such as wind turbines, kilns, sugar mills, crushers, heavy construction, offshore drilling rigs, mining and quarrying.