QuesTek Innovations LLC is applying its Materials by Design computational design technology to develop a new
class of high-strength, secondary hardening gear steels that are optimized for high-temperature, low-pressure (i.e., vacuum) carburization. The new alloys offer three different levels of case hardness (with the ability to “dial-in” hardness profiles, including exceptionally high case hardness), and their high core strength, toughness and other properties offer the potential to reduce drivetrain weight or increase power density relative to incumbent alloys such as AISI 9310 or Pyrowear Alloy 53.
Natural resources—minerals, coal, oil, agricultural products, etc.—are the
blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.
Hobs, broaches, shaper cutters,
shaver cutters, milling cutters,
and bevel cutters used in the
manufacture of gears are commonly
made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.
Surface-hardened, sintered powder metal gears are increasingly used in power transmissions to reduce the cost of gear production. One important problem is how to design with surface durability, given the porous nature of sintered gears. Many articles have been written about mechanical characteristics, such as tensile and bending strength, of sintered materials, and it is well-known that the pores existing on and below their surfaces affect their characteristics (Refs. 1-3). Power transmission gears are frequently employed under conditions of high speed and high load, and tooth surfaces are in contact with each other under a sliding-rolling contact condition. Therefore it is necessary to consider not only their mechanical, but also their tribological characteristics when designing sintered gears for surface durability.
Plane strain fracture toughness of twelve high-carbon steels has been evaluated to study the influence of alloying elements, carbon content and retained austenite. The steels were especially designed to simulate the carburized case microstructure of commonly used automotive type gear steels. Results show that a small variation in carbon can influence the K IC significantly. The beneficial effect of retained austenite depends both on its amount and distribution. The alloy effect, particularly nickel, becomes significant only after the alloy content exceeds a minimum amount. Small amounts of boron also appear beneficial.
The manufacturing process to produce a gear essentially consist of: material selection, blank preshaping, tooth shaping, heat treatment, and final shaping. Only by carefully integrating of the various operations into a complete manufacturing system can an optimum gear be obtained. The final application of the gear will determine what strength characteristics will be required which subsequently determine the material and heat treatments.