Revolutionary new inspection technologies are helping gear manufacturers develop and produce more complex, higher quality gears in a fraction of the time it used to take.
Measurement institutions of seven different countries — China, Germany, Japan, Thailand, Ukraine, United Kingdom and the U.S. — participated in the implementation of the first international comparison of involute gear measurement standards. The German metrology institute Physikalisch-Technische Bundesanstalt (PTB) was chosen as the pilot laboratory as well as the organizer. Three typical involute gear measurement standards provided by the PTB were deployed for this comparison: a profile, a helix and a pitch measurement standard. In the final analysis, of the results obtained from all participants, the weighted mean was evaluated as reference value for all 28 measured parameters. However, besides the measurement standards, the measured parameters, and, most importantly, some of the comparison results from all participants are anonymously presented. Furthermore, mishandling of the measurement standards as occurred during the comparison will be illustrated.
Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.
It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the
practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true
elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.
Gear metrology is a revolving door of software packages and system upgrades. It has to be in order to keep up with the productivity and development
processes of the machines on the
manufacturing floor. Temperature
compensation, faster inspection times
and improved software packages are
just a few of the advancements currently in play as companies prepare for new opportunities in areas like alternative energy, automotive and aerospace/defense.
This section is dedicated to what's new and what's happening in the world of gear inspection and metrology. Here you will find news about products, companies and organizations, services and events affecting the gear inspection and metrology industry.
In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.