This article examines the dry hobbing capabilities of two cutting tool materials—powder metallurgical high-speed steel (PM-HSS) and cemented carbide. Cutting trials were carried out to analyze applicable cutting parameters and possible tool lives as well as the process reliability. To consider the influences of the machinability of different workpiece materials, a case hardening steel and
a tempered steel were examined.
Powder metallurgy (P/M) techniques have proven successful in displacing many components within the automobile drive train, such as: connecting rods, carriers, main bearing caps, etc. The reason for P/M’s success is its ability to offer the design engineer the required mechanical properties with
reduced component cost.
Powder metal. To gear makers today, the phrase conjures images of low power applications in non-critical systems. As powder metal technology advances, as the materials increase in density and strength, such opinions are changing. It is an ongoing, evolutionary process and one that will continue for some time. According to Donald G. White, the executive director of the Metal Powder Industries Federation, in his State-of-the-P/M Industry - 1999 report. "The P/M world is changing rapidly and P/M needs to be recognized as a world-class process - national, continental and even human barriers and prejudices must be eliminated - we must join forces as a world process - unified in approach and goals."
the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.
Powder metallurgy (P/M) is a precision metal forming technology for the manufacture of parts to net or near-net shape, and it is particularly well-suited to the production of gears. Spur, bevel and helical gears all may be made by made by powder metallurgy processing.