In this article the authors present a loaded tooth contact analysis (LTCA) method for asymmetric gears that provides an accurate and efficient design tool for analyzing and comparing designs. The presented method is implemented in SMT's MASTA software. The authors also present an example comparative study using this tool for an automotive application.
Gear noise is among the issues of greatest concern in today's modern gearboxes. Significant research has resulted in the application of enhancements in all phases of gear manufacturing, and the work is ongoing. With the introduction of Electric
Vehicles (EV), research and development in this area has surged in recent years. Most importantly, powerful new noise analysis solutions are fast becoming available.
In this paper local tooth contact analysis and standard calculation are
used to determine the load capacity for the failure modes pitting,
tooth root breakage, micropitting, and tooth flank fracture; analogies
and differences between both approaches are shown. An example gearset is introduced to show the optimization potential that arises from using a combination of both methods. Difficulties in combining local approaches with standard methods are indicated. The example calculation demonstrates
a valid possibility to optimize the gear design by using local tooth contact analysis while satisfying the requirement of documenting the load carrying capacity by standard calculations.