Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses
relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.
One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples
in aerospace actuation systems.
An offshore jack-up drilling rig is a barge upon which a drilling platform is placed. The barge has legs that can be lowered to the sea floor to support the rig. Then the barge can be “jacked up” out of the water, providing a stable work platform from which to drill for oil and gas. Jack-up drilling rigs were first introduced in the late 1950s. Rack-and- pinion-type jack-up units were introduced soon after that and have dominated the industry ever since.
Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but
only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical
design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and
assembly errors on root and contact stresses.
A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.