The design of gear blanks or flanges has traditionally been driven by weight reduction. Recently innovative companies have started to use the gear blank design to tune the system dynamics to reduce gear whine.
A meaningful discussion about noise is quite difficult because the impression of "noise" is quite subjective. Everybody has a lifetime experience with sound / noise and sees themselves as an expert.
Noise issues from gear and motor excitation whine are commonly faced by
many within the EV and HEV industry. In this paper the authors present an advanced CAE methodology for troubleshooting and optimizing such NVH phenomenon.
Electrification has already started to have a noticeable impact on the global automotive industry. As a result, the drivetrains of hybrid (HEV) and full electric vehicles (EV) are facing many challenges, like increased requirements for NVH in high speed e-Drives and the need for performance improvements to deal with recuperation requirements. Motivated by the positive validation results of surface densified manual transmission gears which are also applicable for dedicated hybrid transmissions (DHTs) like
e-DCTs, GKN engineers have been looking for a more challenging application
for PM gears within those areas.
In order to reduce costs for development and production, the objective in gearbox development and design is to predict running and noise behavior of a gearbox without manufacturing a prototype and running expensive experimental investigations. To achieve this objective, powerful simulation models have to be set up in a first step. Afterwards, those models have to be qualified and compared to experimental investigations. During the investigation procedure of gearboxes, there are two possibilities to evaluate the running and noise behavior: quasi-static and dynamic investigations. In times of engine downsizing, e-mobility and lightweight design, the dynamic excitation behavior is becoming increasingly important.
Ground bevel and hypoid gears have a designed motion error that defines parts of their NVH behavior. The surface structure is defined by the hard finishing process.