Which transmission system will come out on top is a hot topic in the automotive community. With multiple transmission-centric conferences on the horizon, there will be plenty of debate, but how much will the answer actually affect gear manufacturers, and when?
This paper presents a new approach to repair industrial gears by showing a case study where pressure angle modification is also considered, differently from the past repairing procedures that dealt only with the modification of the profile shift
coefficient. A computer program has been developed to automatically determine the repair alternatives under two goals: minimize the stock removal or maximize gear tooth strength.
With the ongoing push towards electric vehicles (EVs), there is likely to be increasing focus on the noise impact of the gearing required for the transmission of power from the (high-speed) electric motor to the road. Understanding automotive noise,
vibration and harshness (NVH) and methodologies for total in-vehicle noise presupposes relatively large, internal combustion (IC) contributions, compared to gear noise. Further, it may be advantageous to run the electric motors at significantly higher rotational speed than conventional automotive IC engines, sending geartrains into yet higher speed ranges. Thus the move to EV or hybrid electric vehicles (HEVs) places greater or different demands on geartrain noise. This work combines both a traditional NVH approach (in-vehicle and rig noise, waterfall plots, Campbell diagrams and Fourier analysis) - with highly detailed transmission error measurement and simulation of the complete drivetrain - to fully understand noise sources
within an EV hub drive. A detailed methodology is presented, combining both a full series of tests and advanced simulation to troubleshoot and optimize an EV hub drive for noise reduction.
The 2015 Gear Technology Buyers Guide
was compiled to provide you with a
handy resource containing the contact
information for significant suppliers of
machinery, tooling, supplies and services used in gear manufacturing.
The question is quite broad, as there
are different methods for setting various types of gears and complexity of
gear assemblies, but all gears have a few things in common.
Natural resources—minerals, coal, oil, agricultural products, etc.—are the
blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.