Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.
This article describes a method of obtaining gear tooth profiles from the geometry of the rack (or hob) that is used to generate the gear. This method works for arbitrary rack geometries, including the case when only a numerical description of the rack is available. Examples of a simple rack, rack with protuberances and a hob with root chamfer are described. The application of this technique to the generation of boundary element meshes for gear tooth strength calculation and the generation of finite element models for the frictional contact analysis of gear pairs is also described.
The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.
The NASA Lewis Research Center investigated the effect of tooth profile on the acoustic behavior of spur gears through experimental techniques. The tests were conducted by Cleveland State University (CSU) in NASA Lewis' spur gear testing apparatus. Acoustic intensity (AI) measurements of the apparatus were obtained using a Robotic Acoustic Intensity Measurement System (RAIMS). This system was developed by CSU for NASA to evaluate the usefulness of a highly automated acoustic intensity measurement tool in the reverberant environment of gear transmission test cells.
The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.
The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.
A change has taken place within the industry that is going to have an enormous effect on the marketing, sales, and purchasing of gear manufacturing and related equipment. This change was the American Gear Manufacturers' Association, first biennial combination technical conference and machine tool minishow.
Curvic Couplings were first introduced in 1942 to meet the need for permanent couplings and releasing couplings (clutches), requiring extreme accuracy and maximum load carrying capacity, together with a fast rate of production. The development of the Curvic Coupling stems directly from the manufacture of Zerol and spiral bevel gears since it is made on basically similar machines and also uses similar production methods. The Curvic Coupling can therefore lay claim to the same production advantages and high precision associated with bevel gears.
Sub: 'Finding Tooth Ratios' article published in Nov/Dec 1985 issue
Let us congratulate you and Orthwein, W.C. for publishing this superb article in Gear Technology Journal. We liked the article very much and wish to impliment it in our regular practice.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.