In order to improve load-carrying capacity and noise behavior, gears usually have profile and lead modifications. Furthermore, in gears where a specified tooth-flank load application direction (for drive and coast flanks) is a design enhancement, or even compulsory, the asymmetric tooth profile is a further solution. Nowadays, many gears need to be hard finished. Continuous generating grinding offers a very high process efficiency, but is this process able to grind all modifications, especially asymmetric gears? Yes, it is!
The deformation of the gear teeth due to load conditions may cause premature tooth meshing. This irregular tooth contact causes increased stress on the tooth flank. These adverse effects can be avoided by using defined flank modifications, designed by means of FE-based tooth contact analysis.
This paper presents a new approach to repair industrial gears by showing a case study where pressure angle modification is also considered, differently from the past repairing procedures that dealt only with the modification of the profile shift
coefficient. A computer program has been developed to automatically determine the repair alternatives under two goals: minimize the stock removal or maximize gear tooth strength.
The results of our Annual State of the Gear Industry Survey (See page 26) provided insight on 2016 as well as forecasts for 2017. Here is additional insight from some of the industry's leaders.
Plastic gears are everywhere
today - throughout your car, at
the oceans' lowest depths, in deep
space. The question, when is a
metal gear a candidate for plastic
conversion, can be addressed in
three words, i.e. what's the application?
Chapter 2, Continued
In the previous sections, development of conjugate, face milled as well as face hobbed bevel gearsets - including the application of profile and length crowning - was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. - how it is applied to bevel and hypoid
gears and then expands on profile side shift, and the frequently used root angle correction which - from its gear theoretical
understanding - is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on
five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the
bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following
chapters, some of which also will be covered in this series.