India is rapidly turning into a global manufacturing hub, thanks to the country’s manufacturing and engineering
capabilities, vast pool of skilled expertise and its size. These qualities offer it a strategic advantage for the manufacturing segment. A large number of international companies in varied
segments have already set up a manufacturing base in India and others are following suit. It only makes sense to bring this industry segment together under one roof to discuss the current
trends and technology prevalent to the marketplace. IPTEX 2012 is scheduled from February 9–11, 2012 at the Bombay Exhibition Center in Mumbai, India.
In November, Gear Technology conducted
an anonymous survey of gear manufacturers. Invitations were sent by e-mail to thousands of individuals around the world. More than 300
individuals responded to the online survey, answering questions about their manufacturing operations and current challenges facing their businesses.
Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however,
a new approach has been developed that could reduce the calculation time.
Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order
to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded
wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.
The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress
reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.
This article shows the newest developments to reduce overall cycle time in grinding wind power gears, including the use of both profile grinding and threaded wheel grinding.