In this article, equations for finding profile and base pitch errors with a micrometer are derived. Limitations of micrometers with disc anvils are described. The design of a micrometer with suitable anvils is outlined.
Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.
Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.
Base helix error - the resultant of lead and profile errors is the measured deviation from the theoretical line of contact (Fig. 1). It can be measured in the same way that lead error on a spur gear is measured, namely, by setting a height gage to height H based on the radial distance r to a specified line of contact (Fig. 2), rotating the gear so as to bring a tooth into contact with the indicator on the height gage, and then moving the height gage along two or more normals to the plane of action. The theoretical line of contact on helical gear must be parallel to the surface plate, which is attained by mounting the gear on a sine bar (Fig. 3).
This is the fourth and final article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are those of the author as an individual. They do not represent the opinions of any organization of which he is a member.