Standardized methods, like AGMA 2001-D04 or ISO 6336 for the calculation of the load carrying capacities of gears are intentionally conservative to ensure broad applicability in industrial practice. However, new applications and higher requirements often demand more detailed design calculations nowadays; for example: long operating lives in wind power gearboxes or fewer gear stages and higher speeds in e-mobility applications result in higher load cycles per tooth in a gearbox.
A calculation-based study of different variants with regard to contact ratio and tooth root geometry to compare the results from the 2019 version of ISO 6336 to the previous version, released in 2006.
This paper shows a method to calculate the occurring tooth root stress for involute, external gears with any form of fillets very precisely within a few seconds.
Reduced component weight and ever-increasing power density require a gear design on the border area of material capacity. In order to exploit the potential offered by modern construction materials, calculation methods for component strength must rely on a deeper understanding of fracture and material mechanics in contrast to empirical-analytical approaches.
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant
In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To conclude, both methods are applied to a test gear. The methods are compared both to each other and to other tests on beveloid gears with parallel axes in test bench trials.