Question: When evaluating charts from a gear inspection machine, it is sometimes found that the full length of the profile traces vary, and that sometimes they are less than the length of active profile (above start of active profile-SAP) by up to 20%. This condition could be caused by a concentricity error between tooth grinding and shaping, or by unequal stock removal when grinding. (See Fig. 1.) Is it possible that some of the variation is coming from the inspection machine? How can variation from the inspection machine be reduced?
The dimensions of the worm and worm gear tooth surfaces and some of the worm gear drive parameters must be limited in order to avoid gear undercutting and the appearance of the envelope of lines of contact on the worm surface. The author proposes a method for the solution of this problem. The relations between the developed concept and Wildhaber's concept of the limit contact normal are investigated. The results of computations are illustrated with computer graphics.
The paper describes a procedure for the design of internal gear pairs, which is a generalized form of the long and short addendum system. The procedure includes checks for interference, tip interference, undercutting, tip interference during cutting, and rubbing during cutting.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.
Much of the information in this article
has been extracted from an AGMA
Technical Paper, "What Single Flank
Testing Can Do For You", presented in
1984 by the author
With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the
rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.