A net-shaped metal forming process has been developed for manufacturing quality, durable, high-yield and cost-efficient gears for high-volume production.
An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system. Test results from the parametric studies and the superfinishing process are presented.
With reference to the machining of an involute spur or helical gear by the hobbing process, this paper suggests a new criterion for selecting the position of the hob axis relative to the gear axis.
Today, because of reduced cost of coatings and quicker turnaround times, the idea of all-around coating on three-face-sharpened blades is again economically viable, allowing manufacturers greater freedoms in cutting blade parameters, including three-face-sharpened and even four-face-sharpened blades.