Of timing is crucial in the successful implementation of good ideas, then now is the time to reinstate a good idea that fell into disfavor in the mid-1980s. Now is the time to include the investment tax credit as part of whatever inevitable tax structure tinkering is going to take place during this election year.
Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.
Beginning with our next issue, some of the promised changes in format for Gear Technology will begin showing up in these pages. As part of our commitment to provide you with important information about the gear and gear products industry, we are expanding our coverage. In addition to continuing to publish some of the best results of gear research and development throughout the world, we will be adding special columns covering vital aspects of the gearing business.
This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.
Rotary gear honing is a hard gear finishing process that was developed to improve the sound characteristics of
hardened gears by: Removing nicks and burrs; improving surface finish; and making minor corrections in tooth irregularities caused by heat-treat distortion.
NC and CNC metal cutting machines are among the most popular machine tools in the business today, There is also a strong trend toward using flexible
machining centers and flexible manufacturing systems. The same trend is apparent in gear cutting. Currently the trend toward CNC tools has increased, and sophisticated controls and peripheral equipment for gear cutting machines are now available; however, the investment in a CNC gear machine has to be justified on the basis of economic facts as well as technical advantages.
In robot configurations it is desirable to be able to obtain an arbitrary orientation of the output element or end-effector. This implies a minimum of two independent rotations about two (generally perpendicular) intersecting axes. If, in addition, the out element performs a mechanical task such as in manufacturing or assembly (e.g., drilling, turning, boring, etc.) it may be necessary for the end-effector to rotate about its axis. If such a motion is to be realized with gearing, this necessitates a three-degree-of-freedom, three-dimensional gear train, which provides a mechanical drive of gyroscopic complexity; i.e., a drive with independently controlled inputs about three axes corresponding to azimuth, nutation, and spin.
One of the current research
activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.
This paper presents two new techniques for
aligning and maintaining large ring gears. One technique uses lubricant temperature analysis, and the other uses stop action photography.