In order to improve load-carrying capacity and noise behavior, gears usually have profile and lead modifications. Furthermore, in gears where a specified tooth-flank load application direction (for drive and coast flanks) is a design enhancement, or even compulsory, the asymmetric tooth profile is a further solution. Nowadays, many gears need to be hard finished. Continuous generating grinding offers a very high process efficiency, but is this process able to grind all modifications, especially asymmetric gears? Yes, it is!
RCD Engineering's switch from manual to CNC hobbing operations breaks gear manufacturing lead time records with
Bourn & Koch 100H in their gear production pit crew.
Grinding of bevel and hypoid gears creates on the surface a roughness structure with lines that are parallel to the root. Imperfections of those lines often repeat on preceding teeth, leading to a magnification of the amplitudes above the tooth mesh frequency and their higher harmonics. This phenomenon is known in grinding and has led in many cylindrical gear applications to an additional finishing operation (honing). Until now, in bevel and hypoid gear grinding, a short time lapping of pinion and gear after the grinding operation, is the only possibility to change the surface structure from the strongly root line oriented roughness lines to a diffuse structure.
Ground bevel and hypoid gears have a designed motion error that defines parts of their NVH behavior. The surface structure is defined by the hard finishing process.
This paper introduces the latest process developments for the hard-finishing of gears, specifically in regard to controlling the so-called flank twist.
A reader wants to know: Are profile ground and hobbed globoidal worm sets better than multi-axis CNC generated globoidal worm gear sets for reduction of noise and vibration?
New divisions, open houses and the continued rise of the Industrial Internet of Things - There's been a lot going on in gear grinding in the past year.