Jules Kish responds to comments about his article on finding a hunting ratio, and Dr. Sante Basili argues that shaving is still the best way to finish a rough-cut gear.
In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.
Gear shaving is a free cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity.
Nondestructive examination (NDE) of ferrous and nonferrous materials has long proved an effective maintenance and anomaly characterization tool for many industries. Recent research has expanded its applicability to include the inspection of large, open gear drives. Difficulties inherent in other NDE methods make them time-consuming and labor-intensive. They also present the user with the environmental problem of the disposal of used oil. The eddy current method addresses these problems.
There are problems in dimensional measurement that should be simple to solve with standard measuring procedures, but aren't. In such cases, using accepted practices may result in errors of hundreds of microns without any warning that something is wrong.
Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.
Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?