To increase cost efficiency in wind turbines, the wind industry
has seen a significant rise in power density and an increase in the overall size of geared components. Current designs for multimegawatt turbines demand levelized cost of energy (LCOE) reduction, and the gearbox is a key part of this process. Since fatigue failures nearly always occur at or near the surface, where the stresses are greatest, the surface condition strongly affects the gear life. Consequently, an improved surface condition effectively avoids major redesign or increased material cost due to an increase in part size. Additional finishing methods such as shot peening (SP) and superfinishing (SF) significantly increase the gear load capacity, but these effects have not yet been adequately considered in the current ISO 6336 standard or in any other gear standards. The combination of SP followed by SF will be described here as an “improved gear surface” (IGS).
Standardized methods, like AGMA 2001-D04 or ISO 6336 for the calculation of the load carrying capacities of gears are intentionally conservative to ensure broad applicability in industrial practice. However, new applications and higher requirements often demand more detailed design calculations nowadays; for example: long operating lives in wind power gearboxes or fewer gear stages and higher speeds in e-mobility applications result in higher load cycles per tooth in a gearbox.
How the increasing demands on power transmission and reduction in mass of modern gearboxes lead to gear designs that are close to their load-carrying capacity limits.
The properties of both shot-peened and cold rolled PM gears are analyzed and
compared. To quantify the effect of both manufacturing processes, the tooth root
bending fatigue strength will be evaluated and compared to wrought gears.
Highly loaded gears are usually casehardened to fulfill the high demands on
the load-carrying capacity. Several factors, such as material, heat treatment, or macro and micro geometry, can influence the load-carrying capacity. Furthermore, the residual stress condition also significantly
influences load-carrying capacity. The residual stress state results from heat treatment and can be further modified by manufacturing processes post heat treatment, e.g. grinding or shot peening.
For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?