When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing
process when control of the heat generation at the surface is lost.
Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The
aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.
This paper will demonstrate that, unlike commonly used low-contact-ratio spur gears, high-contact-ratio spur gears can provide higher power-to-weight ratio, and can also achieve smoother running with lower transmission error (TE) variations.
This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.
The presence of significant errors in the two-flank roll test (a work gear rolled in tight mesh against a master gear) is well-known, but generally overlooked.
This paper describes the investigation of a steel-and-plastic gear transmission and presents a new hypothesis on the governing mechanism in the wear of plastic gears.
The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.