This article describes a new technique for the size determination of external Involute splines by using a span measuring method. It provides application performance information
demonstrating how this method and its
measurements correlate with the traditional spline ring gage sizing method.
In the field of large power transmission gear units for heavy machine industry, the following two development trends have
been highly influential: use of case hardened gears and a branching of the power flow through two or more ways.
As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines
finite element techniques with experimental signature and modal
analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how
premature bearing failures were eliminated by detuning the torsional
oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.
An expression is derived, giving the optimum number of teeth over which the span measurement should be made, for profile-shifted spur and helical gears.
Borazon is a superabrasive material originally developed by General Electric in 1969. It is a high performance material for machining of high alloy ferrous and super alloy materials. Borazon CBN - Cubic Born Nitride - is manufactured with a high temperature, high pressure process similar to that utilized with man-made diamond. Borazon is, next to diamond, the hardest abrasive known; it is more than twice as hard as aluminum oxide. It has an extremely high thermal strength compared to diamond. It is also much less chemically reactive with
iron, cobalt or nickel alloys.
Presumably, everyone who would be interested in this subject is already somewhat familiar with testing of gears by traditional means. Three types of gear inspection are in common use: 1) measurement of gear elements and relationships, 2) tooth contact pattern checks and 3) rolling composite checks. Single Flank testing falls into this last category, as does the more familiar Double Flank test.