With its brand-new 300GMS nano Gear Metrology System, Gleason presents a world- first at Control Show 2022, May 03-06, Stuttgart, Germany. The capability of measuring gears at sub-micron level, executing advanced waviness analysis and evaluating gear noise using the most advanced analytical tools, make the 300GMS nano ideally suited to support automotive e-drive production with minimum noise requirements.
Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.
The German National Metrology Institute has developed a novel calibration concept that allows for highly accurate calibration of product-like artifacts.
simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.