This article presents an analysis of asymmetric tooth gears considering the effective contact ratio that is also affected by bending and contact tooth deflections. The goal is to find an optimal solution for high performance gear drives, which would combine high load capacity and efficiency, as well as low transmission error (which affects gear noise and vibration).
In the design process of transmissions, one major criterion is the
resulting noise emission of the powertrain due to gear excitation.
Within the past years, much investigation has shown that the
noise emission can be attributed to quasi-static transmission error.
Therefore, the transmission error can be used for a tooth contact
analysis in the design process, as well as a characteristic value for
quality assurance by experimental inspections.
Gear-loaded tooth contact analysis is an important tool for the design and analysis of gear performance within transmission and driveline systems. Methods for the calculation of tooth contact conditions have been discussed in the literature for many years. It's possible the method you've been using is underestimating transmission error in helical gears. Here's why.
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant
The connection between transmission error, noise and vibration during operation has long been established.
Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect
of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.
Minimizing gear losses caused by churning, windage and mesh friction is important if plant operating costs and
environmental impact are to be minimized. This paper concentrates on mesh friction losses and associated scuffing risk. It describes the preliminary results from using a validated, 3-D Finite Element Analysis (FEA) and Tooth Contact Analysis (TCA) program to optimize cylindrical gears for low friction losses without compromising transmission error (TE), noise and power density. Some case studies and generic procedures for minimizing losses are presented. Future
development and further validation work is discussed.
Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however,
a new approach has been developed that could reduce the calculation time.