The Instrumented Factory for Gears (INFAC) conducted a metallurgical experiment that examined the effects of carburizing process variables and types of cryogenic treatments in modifying the microstructure of the material. The initial experiment was designed so that, following the carburizing cycles, the same test coupons could be used in future experiment.
The process of nitriding has been used to case harden gears for years, but the science and technology of the process have not remained stagnant. New approaches have been developed which are definitely of interest to the gear designer. These include both new materials and new processing techniques.
When it comes to setting the standard for gear making, the auto industry often sets the pace. Thus when automakers went to grinding after hardening to assure precision, so did the machine shops that specialize in gearing. But in custom manufacturing of gears in small piece counts, post-heat treat grinding can grind away profits too.
The heat treating of gears presents a difficult challenge to both the heat treater and the gear manufacturer. The number and variety of variables involved in the manufacturing process itself and the subsequent heat treating cycle create a complex matrix of factors which need to be controlled in order to produce a quality product. A heat treater specializing in gears or a gear manufacturer doing his own heat treating must have a clear understanding of these issues in order to deliver a quality product and make a profit at the same time. The situation also presents a number of areas that could benefit greatly from continued research and development.
Gears are designed to be manufactured, processed and used without failure throughout the design life of the gear. One of INFAC's objectives (*see p.24) is to help manufacture of gears to optimize performance and life. One way to achieve this is to identify failure mechanisms and then devise strategies to overcome them by modifying the manufacturing parameters.
Graded hardening technology has proven over the years to yield very good results when used in the heat treating of carburized gears. It is especially advantageous for smaller companies, subject to higher competitive pressures. Unfortunately, despite the fact that graded hardening is a very well-known method, its use has been limited. We strongly recommend this technology to all of those who need to produce gears with high metallurgical quality.
Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.
Ausforming, the plastic deformation of heat treatment steels in their metastable, austentic condition, was shown several decades ago to lead to quenched and tempered steels that were harder, tougher and more durable under fatigue-type loading than conventionally heat-treated steels. To circumvent the large forces required to ausform entire components such as gears, cams and bearings, the ausforming process imparts added mechanical strength and durability only to those contact surfaces that are critically loaded. The ausrolling process, as utilized for finishing the loaded surfaces of machine elements, imparts high quality surface texture and geometry control. The near-net-shape geometry and surface topography of the machine elements must be controlled to be compatible with the network dimensional finish and the rolling die design requirements (Ref. 1).
Precise heat treatment plays an essential role in the production of quality carburized gears. Seemingly minor changes in the heat treating process can have significant effects on the quality, expense and production time of a gear, as we will demonstrate using a case study from one of our customer's gears.
For heat treatment of tool and alloy steels, the end-user has a wide range of basic types of heat treating equipment to choose from. This article reviews them and details the criteria that must be considered in selecting equipment for a specific application. In making this choice, the most important criterion must be the quality of the tool or part after processing.